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OPTIMAL STATIONARY LINEAR CONTROL OF TIlE WIENER PROCESS

V'aclav E. Benes and Ioannis Karatzas

ABSTRACT

In the present paper we consider the following stochastic

control problem: minimize the average expected total cost

J(x,u) lim inf EU + lu (Q]dt
T x t t

subject to dlt = ut( )dt + dwt, 0 = x; Jul 1 I, wt Wiener,

with all bounded by unity and measurable functionals on the past

of the state process {s; s < t) admissible as controls. It is

proved that under very mild conditions on the running cost function

*(.) the optimal law is of the form

ut() = -1, t > b

= 0, R tl < b

= 1, t < -b.

The cutoff point b and the performance rate of the optimal law u

'are simultaneously determined in terms of the function *(.)

through a simple system of integrotranscendental equations.



OPTIMAL STATIONARY LINEAR CONTROL OF THE WIENER PROCESS

1. INTRODUCTION

In this paper we consider the problem of stationary control of

the stochastic differential equation, d~t = ut( )dt + dwt; =,

where % t n is a Wiener process on an underlying
wher t

rob ability space, (i .

S' Two kinds of cost are involved in this problem. First, one

pays f- i, per unit time for being in the wrong state

where *() is a suitable cost function to be described later;

_ secondly, one pays-'fut per unit time for using the control
t

law y, The control problem is to choose a law ut(E) as a non-

anticipative functional of the solution proces> (Et) with values

in the bounded interval [-1,11, so as to minimize the average

expected total cost.

It is proved that the optimal law can be explicitly described

and its performance characterized in terms of the cost function irz

,(.). The method consists in first restricting attention to an

important subclass of admissible control laws, namely those giving

rise to an ergodic solution process (t). A process is said to

be ergodic if it admits a unique invariant distribution. The
,

optimal law u in this subclass can be obtained by using a

dynamic programming approach, similar to that of Wonham [11];

-it turns out that u is of the form

ut( = -sgn t, ,1% > b

= 0 , I ~ I < b
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where b is a positive constant that can be characterized in terms

of the function *(.). Secondly, the law u* is proved optimal

against any possible nonanticipative law u whatsoever.

The result (1.1) is the natural and expected one; it says that

the best policy is to push t with full force in the negative

direction if it is too positive and in the negative direction if it

is too negative, while refraining from any action if Ft is in-

side a "dead-zone" [-b,b]. The appearance of the latter is a con-

sequence of the running cost lul on the control, of the fact that

the control is "expensive". Were such a cost absent, it is fairly

obvious - ane easily probable by using the methods of the present

paper - that the optimal policy would be described by the "bang-bang"

law: -sgn t"

Among previous works on the topic of stationary control of

systems driven by a Wiener process we cite those of Wonham (11] and

Kushner [8]. The scope of both was severely restricted, however,

in that they allowed only those laws that generate an ergodic solutio

process (actually, only a subclass of these was considered).

2. FORMULATION

Consider the space 0 = C[O,T] of real-valued, continuous

functions on t0,T], for some T > 0. Let (t) denote the family

of evaluation functionals on C0,T] and ,0 < t < T the

o-field of subsets of C generated by {s s < t.10, TI ge
Consider also the a-field f of subsets M of [0,T] x C[0,T]

having the property that, for any t E [OT], Mt belongs to

and that each F-section M of NI, E C[0,T], is Lebesgue measurabl.

A function g defined on [0,T] x C[O,T] is A'-measurable if
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*and only if g(t,.) is .t-measurable, for each t, and g(.,;) is

Lebesgue measurable, for each 4.

Definition 2.1: Let the control measure space be the interval

[-1,1] with its Borel sets. An admissible nonanticipative control

law u is a measurable function u: ([O,T] x C[0,T]I,) - [-1,11.

The class of all such control laws is denoted by '.

For any control law u E 2 and any x E IR, a weak solution

(Ct) to the stochastic differential equation

(2.1) A1t = ut( )cdt + dwt; 0 < t < T

(2.2) 0 =  x

is constructed as follows: one starts with the probability space

US,-R P), where P is Wiener measure on 2 = C[0 ,Ti. Corre-

sponding to each law u E ' and each initial position x E IR, the

new measure

(2.3) pu(dw) = exp 1()dwt u 2 u()diP (dw)x 1o0 tuY tf ) d .I d

is constructed on (o, T where (Et) is the process defined
Tt 11

by t - x + wt, 0 < t < T. According to Girsanov [S], Px is a

probability measure on (q, YT) and the process

(2.4) wt wt - u s5 )ds = - x - (F)ds

L
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is a Wiener process on (0, TpU). Equation (2.4) is an equival

way of saying that the process (t), t = x +w t; 0 < t < T

satisfies the stochastic differential equation

(2.1)' d t = ut()dt + dwt; 0 < t < T

(2.2) 0 = x

on (I, YTP u ) . All processes involved here are adapted to the

underlying family ( 5t) of sub-a-fields of F.. The process

( t) is called a weak solution of (2.1)'-(2.2) because by con-

struction 0( s; s < t) C O(C ; s < t), though not necessarily the

other way around. Such a solution is known to be unique in the

sense of the probability law; see Liptser and Shiryayev [9].

Now consider a function c: ]R - R+ which is even, convex

piecewise, monotonicolly increasing to infinity on x > 0,

and satisfying an exponential growth condition:

(2.1) a(x) = O(eOlxI ) as Ixl - w, some 0 < a < 2.

The optimal control problem can now be formulated as follows:

choose a law u E for which the limit

J(x,u*) = lira 1 u ((t + lu( )1)dt
T- 0T

exists for all x E IR, and which minimizes the average expected

total cost rate

I.... . . . .., , . .i I -
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(2.6) J(x,u) = lim inf T Eu f [g + Iut(Q)Idt
T-- 0

of starting at place x and using control law u, for all

(xu)E [IRx  ] Eu denotes expectation with respect to the
x

probability measure pU introduced in (2.3).

3. SUMMARY

In Section 4 we briefly study the important subclass of feed-

back (Markov) admissible control laws. It is pointed out (and in

the special case of time-homogeneous feedback laws, proved) that

for such controls the stochastic differential equation (2.1)-(2.2) c

the system can be solved in the strong sense.

In Section 5 we consider a subclass of time-homogeneous feed-

back laws that give rise to an ergodic solution process. Asymptotic

properties of those processes, such as existence of a unique invariwi

measure, laws of large numbers and ergodicity of their distributions

are discussed.

The optimal law u* in the abovementioned subclass is

discerned in Section 6 and it is proved that u* is of tAe form

(1.1). Both the cutoff point b and the asymptotic performances X

rate of u* are characterized in terms of the cost function (-),

through the system of integrotranscendental equations (6.3), (6.4).

The method proceeds by constructing a solution to the "asymptotic"

version of the Bellman equation of dynamic programming (6.2).

Finally, the asymptotic performance of the law u is

compared against that of any admissible nonanticipative control u

in @. The result, proved in Section 7, is that u* is actually
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optimal in the (largest possible) class a. The idea employed

here is to first compare the performance of the control laws ovei

finite time intervals [O,T] and then pass to the limit as T

4. MARKOV LAWS AND STRONG SOLUTIONS

Definition 4.1. Suppose there exists a measurable function

Y: IR x [O,T] - [-1,1] such that the nonanticipative law u E

can be represented in the form

r (4.1) ut( ) = Y(Ft,t), any E E C[ 0 T] , 0 < t < T.

Then u is called an admissible Markov law. The class of all

such laws will henceforth be denoted by ja/; obviously _ C/ .

For laws in . the stochastic differential equation

(4.2) d~t Y(%tt)dt + dwt' 0 = x

is known to possess a pathwise unique, strong nonanticipative

solution, in the sense that the solution is adapted to the Wiener

process: a( ; s t) c O(ws; s < t), 0 < t < T; see Zvonkin [121

Definition 4.2. Consider the subclass of V consisting of

those admis-ible nonanticipative laws u for which there exists n

measurable function a: IR - [-I,11, such that

(4.3) t ) = a(t), any ( E C[0,T ] , 0 < t < T.
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Such laws u are called admissible time-homogeneous Markov laws

and their class is denoted by Ye.

For laws in ./i one can easily construct the (pathwise unique)

strong solution to the stochastic differential equation

d~t a( t)dt + dwt, 0 < t < T

(4.4)
0 =x.

Indeed, consider the function

(4.5) (x) = { exp{-2f a(z)dz}dy; x E R

which is continuous, strictly increasing and satisfies the equation

" + 2aO'= 0. The function

(4.6) O(x) = O'( 1 (x)); x EIR

is Lipschitz continuous, as can be checked by simple calculus.

Therefore the stochastic differential equation

(4.7) d t  o(%t)dwt; 0 < t < T

(4.8) € = B(x)0

has for any x E IR a pathwise unique solution (t) on the

probability space (Q, -T,P), strong in the sense that

II I i Il . . .. | -T



s < t) C C(w s; s < t), any 0 < t < T, according to [tS's

classical theory; see for instance Gihman and Skorohod [4]. Denote

by {Q, _FT, ' U I the corresponding time-homogeneous Markov

process

The process

(4.9) t l t)

is now well defined, and an application of ltt's rule gives

I 1 02
dt1 dt - , t1 2 ¢t

d t (1t)) t T ( t))) a ( dt

= a( t)dt + dwt .

So t satisfies both the equation and the initial condition

in (4.4) and because it is a bijection of (t) pointwise in

time:

o{, ; s < t = a{ ; s < t) c o{w ; s < t}, 0 < t < T

i.e. ( t) is a strong solution to (4.4). The corresponding time-

homogeneous Markov process is denoted by ( fT t

5. SOME ERGODIC TIIEORLMS

Introduce the function G(x) Ix 7() as in (4.6),

W o (z)

and consider the subclass . of W, consisting of those laws

iI M rI I- -II -'
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u, ut(() = a(Ft) for which

00 d z Y

(5.1) G() = 0 2 ( a(z)dz}dy <~-t o (z) -

recall also the processes (t),( t) of the preceding section,

corresponding to this law. According to Gihman and Skorohod [4;

§18], the probability distribution G(-) is ergodic for the' G(-Y
Markov process {S l,T' -t't'Pzl in the sense that the following

are true:

Facf 1. Positive Recurrence: The stopping times Tz

inf{t: t = y} are well defined and a.s. finite for any z, y E IR;

besides,

(5.2) EU (T ) < G(-)(2+lz-yl)lz-yl'zzy

Fact 2. Invariance of the Probability Distribution Function G(')/G

For any 0 < t < T,

(S.3) P {t < y}dG(z) =  G(y), y E ]R.

Fact 3. Law of Large Numbers: For any Borel function f(') such

that J ff(y)ldG(y) < w, we have

(5.4) li f(t)dt fG() (y'dG(y
T-)-o 0 ot

a.s. (PU) and L (E), any z ER.
z 0
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Fact 4. Ergodicity of the Distributions: For any function f(.)

as above,

(5.5) lim E Uf( ) any z =
t t f y) 0" 0'

As a consequence:

lim PU{ < y} =t 0 z - ITo Y €

It follows from the properties of the function g(') intro-

duced in (4.5) that the limiting distributions of the processes

(%t) and (%t) exist simultaneously. Consequently, the probabili

distribution function F(., whereF(m)'

A ix  d, fx y
(5.6) F(x) = G( (x)) = = exp{2 a(z)dz~dy,

is invariant for the Markov process {Q, 5,, -5t'Ct'P u } " The ergodi

properties of the latter can be read off from those of the (t)

process:

(5.3)' y} dF(x) = F(y), any 0 < t < T, y EIR.

1 IT iI , ( IiE

(5.4)' f( )dt t ). '( I f(y)dF(y) a s P ) and L (1
1 fm t E- _ X

(5.5)t r ( f(y)dF(y)

any Borel function f(-) such that:
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J f(y)ldF(y) < , any x = E Il.

Proposition 5.1: For any law u E ., ut () ; a(t), the corrc
u

sponding solution process t = t of the system equation (4.4)

is a strongly Feller process, pocessing a unique invariant

probability distribution Fu(')/Fu(-), Fu(x) = 1:(x) as in (5.6),

for which (5.3)'-(S.5)'hold.

Proof. All that remains to be proven is the strong Feller property

and the uniqueness of the invariant distribution, and it suffices

to do both on the ( t) process. The latter is indeed strongly

2 2Feller, since (5.1) implies a fortiori: a (z) > a2 , all z E IR,
2

some a > 0; see Wonham [10]. On the other hand ( t) is recurre

and positive, by (5.2).. For such processes, Khas'riinskii [7]

proves the existence of a unique invariant distribution, Q.E.D.

Definition 5.2. For the constant a of (2.5), 0 < a< 2, let

Wa be the subclass of V," consisting of those laws u,

u t() a(, t ) for which

CO

(5.7) fealxdFU(x) = axlexp{ 2 Ja(z)dz}dx <.

It is evident from (5.4)' and the assumption (2.5) that, for

any u E S4'U

S

4
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J(u) J(x'u) - urn u 1:U[op~ + Iut( dt

(5.8) - oo [(y) + Ia(y)I]dFU(y),

any x 0 EIR.

6. THE OPTIMAL LAW IN

Introduce the function

c(p) = min (up+lul) = 1 - p , Ip[ > 1luli
(6.1) = 0, 1I <  I.

Our objective is to find a positive constant X and a function

v(x), twice continuously differentiable on R and O(e xl) as

lxi - o, with 0 < (x < 2 as in (2.5), satisfying the Dynamic

Programming equation

(6.2) X V (x) + c(V (x)) + O(x), x E IR.

2 xx x

We start with a preliminary result.

Lemma 6.1. Under the assumptions on the running cost function

(.) made in section 2, there exists a unique solution (X,b) to

the pair of equations

b
(6.3) Xb - V (s)ds =o

,I
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(6.4) 2 = fe-S(b+s)ds.

Proof. It suffices to prove that equation 11(x) = 0,

(6.5) H(x) = 2x J-e2s(x+s)ds - J (s)ds - 1

has a unique solution b on IR+ . Indeed, 11(0) = -1/2 and

Il'(x) = 2 [ (x+s) - (x)]ds + 2x 'e (x+s)ds > xP'(x), x > 0.

Clearly, fi(x) as x - , so there exists a unique number

b>0, such that 11(b) = 0, Q.E.D.

The constants (X,b) being as in the previous Lemma, consider

the function V(x) with v(0) = 0 and derivative given by

V (x) = 2Xx - 2 f P(s)ds ; 0 < x <1

(6. 6) = 1 + X[e 2 (x-b)-11 - 2 -XeX(X'S) (s)ds; x > b

fb

= -v (-x) x < b.x

Proposition 6.2. The function v(x) defined above is the

unique (up to an additive constant) solution of (6.2) in C (2)OR),

.with X determined along with the constant b through (6.3)-(6.4).

v(x) is also the smallest nonnegative function satisfying

equation (6.2).

m
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Proof. From (6.6), v (b+) 1 while v x (b-) = 2Xb - 2 JO(s)ds

by (6.3). Therefore v (x) is continuous on IR. On the other han,

V (x) = 2(X-4(x)) ;0 < x <

(6.7) = 2 e(x'b)-_P(x) - 2 fe2(x-s)(s)d]; x > b
b S

= v (-x) x< 0

is clearly continuous on IR. From (6.4) and the fact that 0(-)

is strictly increasing on 1R+ one gets: v (x) > 2(X-O(b)) > 0,

on 0 < x < b, as well as

V xx(x) = 2L fe-2(s-x)(s)ds - O(x] > 0, on x > b.

The function v(x) is even and strictly convex, therefore minimal

among nonnegative solutions of (6.2). By strict convexity,

0 < V (x) < 1, on 0 < x < b an! V (x) > 1, on x > b. It

remains to verify (6.2), which in the present case becomes

= X V (x) + P(x) ; lx < b
xx

(6.2)' = 1 Vxx(x) + 1 - Vx(x) + p(x); x > b
T I x x  x •

V (x) + 1 + V (x) + P(x); x < -b.

(6.2)' is readily verified, by substitution. Uniqueness of

Vx (x) is a consequence of Lipschitz continuity of the function

c(p) defined in (6.1).
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Proposition 6.3. Suppose that vV(x) are a constant a

C(2 )OR) function, respectively, for which (6.2) is satisfied, and

such that

(i) 0 < (x) < 1, 0 < x <

x

(ii) (x) > 1x >

for some positive constant b.

Then the function '(x) is necessarily strictly convex,

therefore V (x) is strictly increasing, b < b and

(6.8) A > A.

Proof. It is a straightforward exercise to verify that v (x)

will necessarily be of the form (6.6), with (X,b) replacing

(X,b). A necessary and sufficient condition for continuity of

V (x) is then

(6.3) Ab 0(s)ds = 1/2,

while (iii) implies

2Jbe(XY4(y)dy 2 f e 2s(b+s)ds

(6.9) > b 0 ,all x > b.

e2(x- ) -2(x-)

A necessary and sufficient condition for (6.9) is (6.10) below:
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(6.10) X>2 2s 0 (S+s)ds.

Indeed, if ; < 2 Je2s (b+s)ds holds, then (6.9) is eventually

false as x -* ®. On the other hand, suppose that (6.10) is true;

to prove (6.9) it suffices to prove

(6.11) (1-e 2t) f(b+s)e-2Sds > f t(6I+s)e 2 sds, all t > 0
0 0

where t = x - b. But (6.11) is equivalent to:

2- st-tSe [(b+s) - 0(b+s-t)]ds > 0, all t > 0,

which is obviously true since P(*) is strictly increasing.

Relations (6.3), (6.10) are therefore necessary and sufficient

conditions for the feasibility of (i)-(iii). They imply that

11(b) < 0, If(.) being the function introduced in (6.5). But 1I(.)

is strictly increasing so b < b and therefore i >, from (6.3)

and (6.10). Strict convexity of V(x) is proven as in

Proposition 6.2, Q.E.D.

Once the solution of the dynamic programming equation (6.2)

corresponding to the smallest possible value of the constant A

has been constructed, we proceed to prove the main result of this

-section, namely the optimality in the class .W' (Definition 5.2)

of the law ut( ) = a*( t), with
t t
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(6.12) a* (x) -sgn x, lxl > b

= 0, xl b

obtained through the minimization

(6.13) a*(x).Vx(x) + la*(x)l E min [UVvx(x) + lull = c(Vx(x)), all x E IR
lull1

Lemma 6.4. V(x) = o(e lxl), as lxI

Proof. It is checked that for all x large enough

2xf2 2c cx

(x) = 1 - X + 2c 2 x  e-2y (y)dy < 1 - a e

x

some c > 0. The result follows readily.

Remark. Dr. Martin Day has noted that, for any other pair

(A,b) as in Proposition 6.3, the functions vx(x),v(x) have a

growth of the order e2 1xI, as x -+ 00

Theorem 6.5. The law u* E 14, defined through

~U() = a* ( t all E E C[0T], 0 < t < T,

with a*(.) as in (6.12), is optimal in . Furthermore:

J(u*) -

I
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Proof. Consider any law u E , and the Markov process

f-u jU, -solution to the stochastic differential equation

(4.4). An application of Ito's rule to the process v( u ), along

with (6.13) and equation (6.2), yi-Ilds

v( U) - V(x) v V( U) + U~ (C u)v v( u]ds + I vx(4u)dwsf0 0 o x  s

> otV(U) + C(V ( ) Ius( u) Ids + 0v( u )dw

00
> t- ft[( + Ius(Cu) ds + ftv( u)dw , a.s. (Pu).

Taking expectations, and noting that

Euft 2 u d < Const.e2a (I xI+t)E 1 te 2a 1ws Ids < co

one gets:

EU'V (

(6.14) x ) V(X) + 1 Eu ft[ u + ju,(0)ds > X all x.t t t X 0 S s

From (5.5)', (5.7) and Lemma (6.4) one gets

lim Eu = 1 v(y)dFu(y), any x E1R.

while taking (5.8) into account and letting t + o in (6.14):

J(u) > X, any u E

On the other hand, (6.14) holds as an equality if u = u*. Therefoi
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J(u*) = .

The last two relations prove optimality of u* in Sa" The

density of -Fu*(.) is given by

p*(y) = (l+2b) "I  IY < b

(6.15)

= (1+2b)'1exp[-2(Jy-b)], [yI > b.

7. OPTIMALITY OF THE LAW u* in )

In this section the performance of the law u* of Theorem 6.5

is compared against the performance of any admissible nonanticipatix

control law u, and u* is proven optimal in the class .

The method consists in considering the finite-horizon

optimization problem: minimize

u T
Eu 0 [ (c ) + IuS (C)I]ds

subject to d t 
= ut(Q)dt + dwt, 0 = x and u E %. Roughly

speaking, the value function

T
V(x,T) inf Eu  f [ ( ) + lu(4)Jlds; (x,T) E IR x [0,T]uE x fT T  x

solves the Cauchy problem I

(7.1) T r  V + C(V) + O(x); (x,i) E IR x (0,T].
2 x

(7.2) V(x,0) = 0: x EIR,

where c(.) is the function defined in (6.1).
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For any law u E , It6's rule gives

EU [¢( s + I u ]()fds > V(x,T)

and optimality of u would follow if it were proved that:

lim V(x,T) _ , all x E 1R.T

In the remaining of this section we justify the method and sub-

stantiate the above heuristics.

Lemma 3.1: A priori bounds on the solution of the Bellman

equation and its gradient. Suppose that the Cauchy problem (7.1),

(7.2) has a C '1 solution V(x,T) on 1R x (0,T], with V(x,T)

continuous on 1R x [0,T]. Then the following inequalities hold:

(7.3) V(x,T) < v(x) + XT, on 1R x [0,T],

(7.4) IVx(x, - )I < vx(I xl) on JR x [o,r].

Proof. It is immediately verified that the function

M (x,T) = v(x) + At is a C2 ' 1  solution in IR x (0,T] of the

Cauchy problem

(7.5) + c(N) + (x); on R x (0,T]

(7.6) N(x,0) = v(x), on IR
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and that, if . is the parabolic operator

Y 1 2 C(V x)-C(Vx) a a
2 3x2 V -V ax

then

Y(M-N) = 0, in IR x (0,T]

M(x,0) - V(x,0) = V(x) > 0, on IR.

By the maximum principle (see [31) one obtains (7.3).

Now consider a sequence {c n(p), n E IN} of smooth (piecewise2

C approximations to the function c(p), with c np) < 0 a.e. onn -

along with the functions V (n) (x,), M(n)(x,[) satisfying (7.1),

(7.2) and (7.5), (7.6) respectively, with c(-) replaced by c (-)

Under such an approximating scheme, V(n)(x,T), V(n)(xT), V(n)(xT)
X xx

converge as n - o to V(x,T), Vx(x,T), Vxx (x, T ) respectively,

uniformly on compact (x,T) sets. Similarly for the function

M(x,T) and its approximations.

It is easily checked that if SY' is the parabolic olperator

1 a2  _t (n) + n(MKn))-(V(n)) n . a
•2ax -1x YX (n)V (n) xx

x x

(NI(n) -V(n)) 0, on 1R+ N (0,T]

then:

M(n)(x,0) - v(n)(x,O) = Vx (x) > 0, on R+X X -

It can be shown by yet another application of the maximum principle
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that Vn(xT) > 0 on IR x [0,T]. Therefore, the potential termxx

n(NI n))- n(V (n)) (n+(n)-() V ( n ) is nonpositive on IR+ x [0,T], so that theMI(n)_v(n) xx ,

x x

the strong maximum principle is applicable (see [3]) and gives

V(n) (x' 1) < ,(n) (x,[), or Vx (x,[) < M (XT) = V (x) on R+  x [0,T]x - x X- x
in the limit as n + o. (7.4) follows since Vx (.,T) is

odd, Q.E.D.

Once the a priori bounds (7.3), (7.4) have been established,

one can apply the method of Theorem VI 6.2 of Fleming and Rishel

[2] to prove the following result:

Proposition 7.2. The Cauchy problem (7.1)-(7.2) has a unique

C2 ,1  solution V(x,T) on IR x (0,T] that is continuous on

IR x (0,T] and even in x.

By the approximation argument used in the proof of Lemma 7.1

(or directly; see [2], Exercise VI.9) it can be shown that

Vxx (x,T) > 0 in IR x [0,T].

Consider the optimal process (nt) for the finite horizon

problem, defined on the probability space (Q, Y,P) as the (strong)

solution of the stochastic differential equation

(7.8) dr= 1(V
x ( n1,I-t))dt + dwt ,  0 < t < T

(7.9) n0 = x > 0
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where c(p) = -sgnp.l 1lpl> 11 = a*(p).

Lemma 7.3. For any x > 0, consider the stopping time

S = inf{t < t; nt = 01

- -, if ntI > 0, all 0 < t < T.

Then

(7.10) Vx(X,) = E f(nt)dt.

Proof. The gradient V of the solution to the Cauchy problemx

(7.1)-(7.2) is not a C2 '1  function; it belongs, however, to the

Sobolev space W 2' (D x [0,T]), for any p > 1 and any bounded
p

subset D c IR, and satisfies in that space the equation
(1 + V
(V I ((V -)(V) + (x) on IR x (O,T], derived from

(7.1) by formal differentiation. For functions in the Sobolev

space a generalized Ito formula holds (Zvonkin [12], Theorem 3)

which, applied to Vx (ntiT-t) on [0,S] along with (7.8! and the

fact that V (ns,T-.S) = 0, a.s., yields (7.10), Q.E.D.
x S

Consider now the "optimal process (t) for the stationary

control problem":

(7.11) d t = C(Vx( t))dt + dwt, t > 0

(7.12) = x,
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defined on the same probability space (Q, F,P) and with the same

initial condition as for (7.8), (7.9).

Lemma 7.4. I tI < IntI < Ix + wt[, 0 < t < T; a.s.(P).

Proof. An easy consequence of the comparison theorem of Ikeda

and Watanabe [6] and (7.4) of Lemma 7.1.

From (7.10) notice that, for any r > 0, V x(.,) increases

to infinity as x , since p{.) does. Therefore, for any

-U + 0,

(7.13) s(1 = max{x > 0; Vx,) = 1)

is well-defined and finite.

Lemma 7.5. s(i) is left continuous and decreasing on IR+.

Proof. It can be checked that for the approximating functions

introduced in the proof of Lemma 7.1: j(V ( n )) = 0 in R x (O,T],

Y. being the operator defined in (7.7), and V(n) (x,O) = *(x) > 0,
I X T

on N+ By a maximum principle argument: V n)(x,[) > 0 on

Ii+x [0,T], and therefore Vx (X, 2) > Vx(x'Tl), 0 < '1 < T x > 0

in the limit as n . This proves the monotonicity of s('). Lef'

continuity is an easy consequence of definition (7.13) and monotonic'

Lemma 7.6. lim Vx(x,T) = Vx(x), uniformly on compact x-sets.

iI ~ ~ ~~~~ ~ ~~~~ .- Fi, ... 0-0 .... n0 . ...-
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Proof. Notice that

(vV c~)(-V) + V (c (V) -(Vx))

1
(v -< (Vx'Vx)xx + c(Vx ) (vx-Vx)x,

on IR x (0,T], by convexity of V, monotonicity of E and (7.4).

An application of the generalized Ito formula to Vx t  Vx( t

gives:

0 < V (x) - V (XT) < E V(R) = V ()dP,
X ' x R {R=T} d

where:

* 0
R = inf{t < 1: 01

t

= T, if t > 0, all 0 < t < .

We note that: E * V (Iyl)p*(y)dy < as long as

0 < 6 < - 1, by virtue of (5.5) and (6.15). So
s E

sup xVl46 (1R*J) < -, which implies uniform integrability (and hence

also absolute continuity with respect to measure P) of the family

of random variables {v (&*I)} On the other hand,

P(R = ) P(x + wt > 0, all 0 < t < T) = 24(xT - l/2) - 1

as T - , uniformly on compact x-sets; see Gihman and Skorohod

[4; §11. The result follows by uniform absolute continuity.
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Corollary. s(T) 4 b, as T t .

Proposition 7.7. lim V(x,T) x any x E 1.

Proof. That li< sup < A, uniformly on compact x-sets, is a

consequence of (7.3). To prove the opposite inequality note that,

by virtue of Lemma 7.4,

1

V(x,T) = E f[ (n') + 1 ]dtf 0 t -,I t > s ( 1' t )
jIt ,

> E +[(t
) + 1 , ]dt

and therefore, for any x E IR,

I
V(X,)T > t) + 1 , dt -

T fo 1-b)

TI~t

(7.14) F Ft -

t~xtx
Ft , x ( - h) } lI d t

where

y+

Ftx(y) = Pt YI 0 ' x. X) F (y) = p*Cz)dz.

F* (.) is the ergodic probability distribution function correspondin

to the optimal law u in ',f. Now

i



27

(7.15) lrn KF (s(IE-t)) -Ft' (b) -

f F*(s(Tr-t)) -F*(b)}Idt = 0.

Indeed, the integrand in (7.15) is dominated by

2 supl Ft (Y) - F*(y)I , which tends to zero as t - ,because

tt~x

Ex. 8.1.13). Hence

lrn (F t(s~i-t))- F t~(b))dt = lrn F- A (s (E-t)) - *()d = 0
fo " t, I f

since lrn F (s(t)) =F (b), by the Corollary to Lemma 7.6. By

the same token, the entire second term on the right hand side of

(7.14) converges to zero as I - , while the first term converges

to X.Therefore, for any x E R:

lrn inf V(x,T[) >X Q.E.D.

We are now in a position to prove the main result of this

section.

Theorem 7.8. The law u of Theorem 6.5 is optimal in the

class of admissible nonanticipative controls, i.e. for any

u E ,x E R:

(7.16) J (x, u) =lini inf 1 EU [0~ G U) + Ju ( )Jdt > X~ = J(u*).
T x J0- t t
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Proof. Take any law u E " along with the Girsanov solution

process (u) satisfying d = ut( U)dt + d'tv 0 x on

(n, 9rT,PU) as in Section 2, and apply 1t's rule to the process

V( t,T-t), V(x,T) being the function of Proposition 7.2:

t

V (x, T) = V ( ,T) - V ( ,O0) J[u ( U)V (C,T-t)

+ V (t,T-t) - V (t,T-t)]dt- V,(Ct,T-t)dwt.

Because c(p) = min (up+juj), we get

(7.17) V(x,T) < [0( t ) + lutG U)I dt - TVx(,T-t)dwt a.s. (PU),

0 [tQ~ + IufuHd x a ts

any x EIR, T > 0.

The expectation of the stochastic integral on the right hand side of (7.17)

is zero, because

EU T 2 T 2 u 2(lxl+T) T  2a lwt l

E; V0,,tTt)dt)dt < const. e E(e )dt <

by virtue of (7.4), and it follows from (7.17) by taking expectations that

V (x, T) < ! Eu f[,(u) + Iut(Ou) I]dt; any x E IR, T > 0.
T T x 0  t

(7.16) is obtained by a passage to the limit as T - and taking

into account the assertion of Proposition 7.7.
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